Catechol-binding serines of beta(2)-adrenergic receptors control the equilibrium between active and inactive receptor states.

نویسندگان

  • C Ambrosio
  • P Molinari
  • S Cotecchia
  • T Costa
چکیده

The binding free energy for the interaction between serines 204 and 207 of the fifth transmembrane helix of the beta(2)-adrenergic receptor (beta(2)-AR) and catecholic hydroxyl (OH) groups of adrenergic agonists was analyzed using double mutant cycles. Binding affinities for catecholic and noncatecholic agonists were measured in wild-type and mutant receptors, carrying alanine replacement of the two serines (S204A, S207A beta(2)-AR), a constitutive activating mutation, or both. The free energy coupling between the losses of binding energy attributable to OH deletion from the ligand and from the receptor indicates a strong interaction (nonadditivity) as expected for a direct binding between the two sets of groups. However, we also measured a significant interaction between the deletion of OH groups from the receptor and the constitutive activating mutation. This suggests that a fraction of the decrease in agonist affinity caused by serine mutagenesis may involve a shift in the conformational equilibrium of the receptor toward the inactive state. Direct measurements using a transient transfection assay confirm this prediction. The constitutive activity of the (S204A, S207A) beta(2)-AR mutant is 50 to 60% lower than that of the wild-type beta(2)-AR. We conclude that S204 and S207 do not only provide a docking site for the agonist, but also control the equilibrium of the receptor between active (R*) and inactive (R) forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic contributions of the functional groups of epinephrine to its affinity and efficacy at the beta2 adrenergic receptor.

The structural basis of ligand affinity can be approached by studying the interactions between a drug and receptor residues; the basis for efficacy is more complex and must involve activation-associated conformational changes. We have used wild-type (WT), a constitutively active mutant (CAM), and a "constitutively inactive" mutant beta2 adrenergic receptor (beta(2)AR) to investigate changes in ...

متن کامل

Solubilization and characterization of the beta-adrenergic receptor binding sites of frog erythrocytes.

Specific beta-adrenergic receptors present in membrane preparations of frog erythrocytes were identified by binding of (-)-[3H]dihydroalprenolol, a potent competitive beta-adrenergic antagonist. The (-)-[3H]dihydroalprenolol binding sites could be solubilized by treatment of a purified erythrocyte membrane fraction with the plant glycoside digitonin but not by treatment with a wide variety of o...

متن کامل

تأثیر بیماریها بر پاسخدهی گیرنده های بتا - آدرنرژیک

The development of radioligand - binding studies has greatly advanced our knowledge of the molecular pharmacology of beta - adrenoceptors. Using this technique it became possible for the first time to directly determine the tissue concentration of beta - adrenoceptors, and by this, the responsiveness of tissues to beta - adrenergic stimulation. One major insight into the molecular pharmacology ...

متن کامل

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

Structural insights into G-protein-coupled receptor activation.

G-protein-coupled receptors (GPCRs) are the largest family of eukaryotic plasma membrane receptors, and are responsible for the majority of cellular responses to external signals. GPCRs share a common architecture comprising seven transmembrane (TM) helices. Binding of an activating ligand enables the receptor to catalyze the exchange of GTP for GDP in a heterotrimeric G protein. GPCRs are in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 57 1  شماره 

صفحات  -

تاریخ انتشار 2000